
17

Perfecto: A SystemC-Based Design-Space
Exploration Framework for Dynamically
Reconfigurable Architectures

PAO-ANN HSIUNG, CHAO-SHENG LIN, and CHIH-FENG LIAO

National Chung Cheng University

To cope with increasing demands for higher computational power and greater system flexibility,

dynamically and partially reconfigurable logic has started to play an important role in embedded

systems and systems-on-chip (SoC). However, when using traditional design methods and tools,

it is difficult to estimate or analyze the performance impact of including such reconfigurable logic

devices into a system design. In this work, we present a system-level framework, called Perfecto,

which is able to perform rapid exploration of different reconfigurable design alternatives and to

detect system performance bottlenecks. This framework is based on the popular IEEE standard

system-level design language SystemC, which is supported by most EDA and ESL tools. Given

an architecture model and an application model, Perfecto uses SystemC transaction-level models
(TLMs) to simulate the system design alternatives automatically. Different hardware-software

copartitioning, coscheduling, and placement algorithms can be embedded into the framework for

analysis; thus, Perfecto can also be used to design the algorithms to be used in an operating system

for reconfigurable systems. Applications to a simple illustration example and a network security

system have shown how Perfecto helps a designer make intelligent partition decisions, optimize

system performance, and evaluate task placements.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Model-
ing of computer architecture; D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems; D.4.8 [Operating Systems]: Performance—Simulation

General Terms: Design, Experimentation, Performance, Verification

Additional Key Words and Phrases: Reconfigurable systems, partitioning, scheduling, placement,

performance evaluation, design-space exploration

ACM Reference Format:
Hsiung, P.-A., Lin, C.-S., and Liao, C.-F. 2008. Perfecto: A SystemC-based design-space

exploration framework for dynamically reconfigurable architectures. ACM Trans. Reconfig.

This work was supported by the National Science Council, Taiwan, under project grant NSC96-

2221-E-194-065-MY2.

Authors’ address: P.-A. Hsiung (corresponding author), C.-S. Lin, C.-F. Liao, National Chung

Cheng University, 168 University Road, Min-Hsiung, Chiayi, Taiwan-62102, ROC; email:

hpa@computer.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1936-7406/2008/09-ART17 $5.00 DOI 10.1145/1391732.1391737 http://doi.acm.org/

10.1145/1391732.1391737

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:2 • P.-A. Hsiung et al.

Technol. Syst. 1, 3, Article 17 (September 2008), 30 pages, DOI = 10.1145/1391732.1391737

http://doi.acm.org/10.1145/1391732.1391737

1. INTRODUCTION

With rapidly increasing consumer requirements for product features and the
entrance of the electronics industry into the low-profit era, there is a pressing fi-
nancial reason for adding more flexibility to system designs without sacrificing
the performance and possible parallelism of ASIC. Reconfigurable technologies
[Compton and Hauck 2002] are viewed as the solution for getting this flexi-
bility; however, the introduction of dynamic reconfiguration adds several new
dimensions to the system design-space, since the same logic area can be con-
figured to execute different functions at different times. These new dimensions
have created problems in evaluating the performance of system designs, since
now this depends not only on fixed hardware and software scheduling, but also
on how the reconfigurable space is efficiently used to accelerate system tasks.

Figure 1 compares the traditional system architecture with a dynamically re-
configurable one. Figure 1(a) shows a traditional SoC with a processor, memory,
and some hardware accelerators. Figure 1(b) illustrates a dynamically reconfig-
urable system-on-chip (DRSoC) architecture [Pelkonen et al. 2003], which is an
SoC architecture enhanced with an embedded dynamically reconfigurable logic
(DRCL), such as FPGA, and a ROM for storing the reconfigurable functions.

Currently, there are many research groups studying reconfigurable tech-
nologies [Baleani et al. 2002; Chang and Marek-Sadowska 1998; Desmet et al.
2002; Loo and Wells 2006; Mei et al. 2000; Noguera and Badia 2003; Rakhma-
tov and Vrudhula 2002; Trimberger 1998]. Most of the research is focused on
hardware-software partitioning, task scheduling, and placement algorithms.
However, there is no framework that integrates all these emerging design tech-
nologies for DRSoC because existing frameworks, such as the ADRIATIC design
flow [Pelkonen et al. 2003] and SyCERS [Santambrogio 2008], focus mainly on
the design-space exploration of reconfigurable architectures and not on the de-
sign algorithms. In fact, the current practice is to synthesize the hardware
circuits into a vendor-specific FPGA such as Xilinx or Altera and then do some
performance evaluations using CAD tools such as CoWare’s ConvergenSC or
Synopsys’ System Studio. However, these evaluations are all for some fixed
design configuration, as these commercial tools do not support dynamic or par-
tial reconfigurations of the system under design. In this work, a design-space
exploration framework called Perfecto is proposed and developed to fill this
integration gap. Perfecto can be used not only to explore the design space of
dynamically and partially reconfigurable systems, but also to explore the con-
struction of the design algorithms that must be implemented into an operating
system for reconfigurable systems (OS4RS).

In creating such a framework, there are several issues to be resolved, de-
scribed as follows. Solutions or pointers to solutions are also presented.

—Architecture Model. How must one define a parameterized architecture
model such that users can configure it by simply setting the parameters?

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:3

Fig. 1. SoC architectures: (a) traditional; (b) reconfigurable.

Section 3.1 will give a formal definition of the reconfigurable architecture
model used in Perfecto.

—Application Model. How must one define an application model such that a
generic application can be executed on the architecture model? Section 3.2
will give a formal definition of the application model used in Perfecto.

—Design Algorithms. What kind of design algorithms must be supported
by the framework such that the execution of the application model on
the architecture model can be thoroughly analyzed? Partitioning, schedul-
ing, and placement algorithms are considered in Perfecto and described in
Sections 3.3, 3.4, and 3.5, respectively.

—System Evaluation. What kinds of system features must be evaluated such
that they are of use to system designers? Section 3.6 will give the four task
features and five partition features that are evaluated in Perfecto.

—Guidelines. In what ways can Perfecto guide designers in choosing the right
design alternatives that meet user requirements? Perfecto helps design-
ers in three ways: (a) making intelligent partition decisions, (b) optimiz-
ing performance, and (c) evaluating task placements. Examples are used in
Section 4 to illustrate these guidelines.

Perfecto is based on SystemC [OSCI 2008], an IEEE 1666 standard system-
level modeling language supporting both software and hardware specifications.
Executable specification with simulation is an added benefit of SystemC, which
is rapidly becoming the language of choice for system-level design. This is partly
due to the fact that all large EDA vendors support or plan to support SystemC in
their tools. Perfecto takes full advantage of unique features of SystemC, such as
built-in simulation, transaction-level modeling, software-hardware modeling,
communication modeling, and performance evaluation.

The rest of the article is organized as follows. Related previous work is de-
scribed in Section 2. Section 3 describes the Perfecto framework in detail, in-
cluding the SystemC-based reconfigurable architecture model, the application
model, and the sample partitioning, scheduling, and placement algorithms im-
plemented. Section 4 illustrates the benefits of Perfecto by applying it to two
examples. Section 5 gives some conclusions with consideration for future work.

2. PREVIOUS WORK

Being a simulation-driven system description language, the IEEE 1666-2005
SystemC standard language has been used for design-space exploration at

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:4 • P.-A. Hsiung et al.

system level in several application domains, such as embedded software, SoC,
multicore systems, and reconfigurable architectures. The transaction-level
modeling (TLM) interfaces supported by SystemC not only make simulation
possible at different abstraction levels, but also accelerate simulation, thus
enabling rapid design-space exploration. Further, due to the C++-based design,
SystemC can be used to model both hardware and software. All these features
make SystemC a very suitable language for exploring and evaluating recon-
figurable system architectures and applications. Nevertheless, SystemC is still
restricted in its capability to model dynamic reconfiguration because runtime
instantiation of sc module and dynamic binding of sc method and sc thread are
not allowed in the current IEEE 1666 version of SystemC. Nevertheless, it was
shown by Rissa et al. [2005] that SystemC can achieve a much faster simulation
speedup compared to traditional HDLs.

SystemC has been used for modeling and exploring reconfigurable system
architectures in some previous work such as the ADRIATIC project [Pelkonen
et al. 2003; Qu et al. 2004; Tiensyrjä et al. 2004] and the SyCERS framework
[Santambrogio 2008]. The ADRIATIC project used SystemC to model dynami-
cally reconfigurable systems by introducing a dynamically reconfigurable fabric
(DRCF) [Pelkonen et al. 2003]. Reconfigurable components are all mapped to
a DRCF that is generated from a template which contains a context sched-
uler, an instrumentation process, and a multiplexer that routes data transfers
to correct instances. Interfaces and ports of reconfigurable components are all
added to the DRCF. Bus cycle-accurate performance evaluations such as re-
configuration delay, context size, and computation delays can be obtained. The
limitations are as follows. All components mapped to DRCF must be at the
same level of hierarchy. Partial configuration was not supported because DRCF
uses context switching to change between the different reconfigurable functions.
DRCF was later extended into dynamically reconfigurable coprocessors (DRC)
[Qu et al. 2004], which support partial reconfiguration using a configuration
scheduler and an input splitter. However, only reconfiguration latencies were
evaluated. Energy consumptions were not modeled in DRCF and DRC and the
support for design-space exploration of system architecture alternatives was
limited.

SyCERS [Santambrogio 2008] is also a SystemC-based framework for design-
space exploration of dynamically reconfigurable systems. Partial reconfigura-
tion is supported. Instead of static binding of multiple functions through a
multiplexer, as in DRCF, or through an input splitter, as in DRC, SyCERS
uses function pointers that are changed at runtime to model dynamic recon-
figuration. SyCERS allows users to model the application through a fixed set
of interfaces and to model the system architecture using several TLM black
boxes constituting the YaRA architecture. SyCERS uses sc thread to model
a reconfigurable component and uses sc mutex to synchronize configurations
and executions. Elaborating on details of the configuration process and con-
figuration controller is the focus of SyCERS, which can help a designer to de-
cide on a more optimal architecture for a particular application in terms of
the number of black boxes. SyCERS does not focus on how hardware-software

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:5

partitioning, scheduling, and placement are performed for an architecture-
application combination.

The newly proposed Perfecto framework is most similar to SyCERS because
we are also trying to find a match between an application model and a reconfig-
urable architecture TLM model. Its difference from DRCF, DRC, and SyCERS
is that instead of considering fixed algorithms, Perfecto evaluates partition-
ing, scheduling, and placement algorithms along with an architecture and an
application. Further, in Perfecto, design-space exploration is automatically per-
formed by providing an interface to random task graph generation, evaluating
multiple partitionings of the system, detecting performance bottlenecks, and
evaluating the placement of all reconfigurable tasks in each partitioning. A
designer can choose the best architecture by referring to the partition evalua-
tions in Perfecto. Section 3.6 will present more details on how Perfecto performs
design-space exploration.

3. PERFECTO FRAMEWORK

Design-space exploration and performance evaluation are extremely important,
but difficult for reconfigurable system designers to achieve, due to the complex
dynamic nature of such systems and due to the multitude of combination possi-
bilities in hardware-software partitioning, reconfigurable hardware scheduling,
and reconfigurable hardware placement. Moreover, scheduling and placement
must be concurrently considered for a feasible design solution. Perfecto is a
framework proposed for integrating the design algorithms and for the design-
space exploration of dynamically reconfigurable systems through performance
evaluation.

As shown in Figure 2, the design flow for dynamically reconfigurable systems
is divided into two phases, namely, a front-end design and a back-end design.
The front-end design phase takes an architecture model and an application
model, which might be derived from user-given system specifications, and then
generates three kinds of tasks, namely, hardware task, reconfigurable hardware
task, and software task. The back-end design phase synthesizes the three kinds
of tasks, performs more detailed hardware-software cosimulation, and then
implements the full system using back-end tools such as a hardware synthesis
tool, software compiler, gate-level simulator, and power estimation tool. Perfecto
nicely fits into the front-end design phase as the main tool for design-space
exploration and performance evaluation.

As shown in Figure 3, Perfecto takes two inputs, namely an architecture
model and an application model, which will be defined later in Sections 3.1.4
and 3.2, respectively. Hardware-software partitions are then generated by
Perfecto. For each partition, the scheduler in Perfecto schedules the reconfig-
urable hardware and the software tasks (it is assumed here that the fixed hard-
ware accelerators are part of the DRSoC architecture and thus not scheduled
by Perfecto). Then, Perfecto simulates the execution of the software tasks on a
processor, places the hardware tasks in the reconfigurable logic, and simulates
their execution on the DRCL. Finally, after all task executions in all partitions

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:6 • P.-A. Hsiung et al.

Fig. 2. Design flow of DRSoC.

have been simulated, Perfecto generates several reports for the system designer,
including partition evaluations, bus-access conflicts, and real-time placement
information, which are described in Section 3.6.

In the rest of this section, we will first describe the two inputs of Perfecto,
namely, the reconfigurable architecture model and parameters in Section 3.1
and the application model and task parameters in Section 3.2. Later, in Sections
3.3, 3.4, and 3.5, respectively, we will also describe the partitioning, scheduling,
and placement algorithms that were implemented into Perfecto for illustration
purposes. Designers can always change these algorithms or use the real-time
information provided by Perfecto to construct a suitable algorithm. It must
be noted here that the algorithms themselves are not the focus of design, but
rather the evaluation framework design and how it can benefit designers. The
algorithms will be the focus of design when we design an operating system for
OS4RS.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:7

Fig. 3. Perfecto simulation flow.

3.1 Reconfigurable Architecture Model

For performance evaluation, we need a basic architecture model of the target
dynamically reconfigurable system. As shown in Figure 4, the basic reconfig-
urable system architecture model in Perfecto consists of a processor model, a
memory model, a function ROM model, a bus model, an arbiter model, and a
dynamically reconfigurable logic (DRCL) model. We use the SystemC design
language [OSCI 2008] to develop this architecture model because we are doing
design-space exploration at the system level and because the design contains
both hardware and software functions. In this architecture, a simple bus model
is used as communication infrastructure for the hardware tasks. Here, “sim-
ple” means that there is no pipeline and no split transaction. The bus model
eliminates the need to do global routing after tasks are placed into the DRCL.
Function ROM is a memory storage to save configurations (e.g., bitstreams)
that will be loaded into and executed in DRCL. The other system models are
described in the rest of this subsection.

3.1.1 Processor Model. A processor is required to execute the software in
a DRSoC. Besides controlling peripheral devices, it has mainly two behaviors.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:8 • P.-A. Hsiung et al.

Fig. 4. DRSoC SystemC architecture model.

Fig. 5. Behavior of processor.

One is using the bus to access data from memory for executing software in-
structions, as shown in Figure 5(a). The other is to issue commands to DRCL,
such as reconfigure or execute, as shown in Figure 5(b). These two behaviors of
the processor are simulated at transaction level.

3.1.2 Bus Arbiter Model. An arbiter model is required, as there is more
than one master device on the bus in a DRSoC, including the processor and
the DRCL. The main behavior of an arbiter is to arbitrate when more than one
request is made for the bus. The arbiter selects the most suitable request to
grant bus access according to the following policy, while the other requests are
kept in the waiting queue.

(1) If the current request is a locked burst request, then it is always selected.

(2) If the last request had its lock flag set and the corresponding master is
“requesting” again, this request is selected from the waiting queue and
returned.

(3) The request with highest priority (smallest number) is returned from the
waiting queue.

3.1.3 DRCL Model. There are three main behaviors in a DRCL model.
First is memory access. As shown in Figure 6(a), when a DRCL receives an
execute command from the processor, the DRCL will access memory according
to the address parameters. Next, DRCL may request a bitstream from the func-
tion ROM, as shown in Figure 6(b). As shown in Figure 6(c), DRCL may issue
a response command to the processor when it completes a task. Note that the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:9

Fig. 6. DRCL behaviors.

configuration controller is embedded within the DRCL model, which is similar
to the embedded ICAP controller in Xilinx Virtex FPGAs.

Reconfigurable logics can be divided into two configuration styles, namely,
full configure (static) and partial configure (dynamic). The DRCL model in Per-
fecto can simulate both types of configuration. However, we must note here that
SystemC does not allow dynamic binding of modules with their behaviors and
also does not allow a module to have multiple behaviors that can be configured
at runtime. We can thus say that SystemC does not support reconfiguration
of any kind. There are several workarounds for simulating reconfiguration in
SystemC. A straightforward method is the static binding of a SystemC mod-
ule to multiple behaviors and then selecting one of the behaviors for dynamic
execution. This method is the simplest, but quite inflexible because for every
new function, we need to modify the DRCL model. Similar to DRCF [Pelkonen
et al. 2003] and DRC [Qu et al. 2004], Perfecto adopts this method because
it is simple and fast to simulate. For design-space exploration, speed of sim-
ulation is of utmost importance. Other methods include the use of C function
pointers [Santambrogio 2008] and C++ templates, all of which might cause
an overhead in SystemC simulation performance and are thus not very suit-
able for design-space exploration. Further, multiple sc threads are used in the
DRCL for modeling partial reconfiguration. To avoid the use of function point-
ers, Perfecto uses a function table and a task table, with interfaces for automatic
insertion of new functions and new tasks.

3.1.4 Architecture Model and Parameters. In Perfecto, the basic architec-
ture model as illustrated in Figure 4 is simulated using the aforesaid models of
the processor, memories, the arbiter, and the DRCL. A software task executes
in the processor model by accessing the memory. A reconfigurable hardware
task executes in the DRCL model by accessing the memory for input and out-
put data. Communications between a software task and a hardware task are
accomplished by the processor and the DRCL models. A hardware function
reconfiguration is accomplished by the DRCL model by accessing the function
ROM. The arbiter grants access to the bus for memory accesses by the processor
and the DRCL.

If Perfecto simulates only a fixed basic architecture model, then it will be
of little use to a designer who wants to experiment with different system de-
sign alternatives. Thus, Perfecto allows a system designer to tune the basic
architecture model through several architecture parameters, as described in
the following definition.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:10 • P.-A. Hsiung et al.

Definition 3.1. An architecture model is defined as a tuple S = 〈Wbus,
Nmem, Tmem, Nslice, Apart, Asched, Aplace〉, where the parameters are as follows.

—Wbus is the bus width. The basic unit is a word of 4 bytes. A designer may
specify the bus width in units of word. This parameter affects the memory-
access counts of an application running in the target system.

— Nmem is the memory size. This is a multiple of 4 because the smallest memory
unit is 4 bytes. The parameter affects the application-response time.

—Tmem is the memory-access time. This parameter is the time for one memory
access. This parameter also affects the application-response time.

— Nslice is the DRCL size. This is the total number of slices in a DRCL.

— Apart is the partitioning algorithm. The default partitioning algorithm is
function-based partitioning. Users can implement their own partitioner
for task mapping or choose an optional method, including the common-
hardware-first or the random partitioning as described in Section 3.3.

— Asched is the scheduling algorithm. The default scheduling algorithm is sim-
ply FIFO. Users can implement their own scheduler to optimize an applica-
tion. Another scheduler also currently implemented in Perfecto is an energy-
efficient hardware-software co-scheduler [Liu 2006] for reconfigurable
systems.

— Aplace is the placement algorithm. The default placement algorithm is a rule-
based one, which will be described in Section 3.5. Users can implement their
own placer to place the hardware tasks into DRCL.

As an illustrative example, the architecture model could be as follows. The
bus width is 2 words, the memory size is 100MB, the memory-access time is
10ns, the maximum number of DRCL slices available is 5, and the partitioning,
scheduling, and placement algorithms are all the default ones.

3.2 Application Model

Besides using parameters to model a user-desired dynamically reconfigurable
system architecture for simulation, Perfecto further allows designers to specify
the application model that represents an application to be executed on the re-
configurable architecture model. An application is defined as set of concurrent
tasks with possible precedence relations among these tasks. Thus, an applica-
tion can be formalized as follows.

Definition 3.2. An application is represented by a directed acyclic graph
G(V , E), where these aspects are as follows.

—V is a set of nodes representing the application tasks. Each task Ti in-
vokes a function F j , which is represented by the tuple F j = (fname, tsw, tcfg,
thw, nslice, fcode), where fname is a unique function name, such as DES, AES,
DCT, etc.; tsw is the computation time of the software implementation of the
function, without considering memory-access time; tcfg is the configuration
time of the hardware implementation of the function; thw is the computa-
tion time of the hardware implementation of the function; nslice is the area

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:11

Fig. 7. SystemC function behavior code for simple example.

of DRCL required by the function in terms of the number of slices, where a
slice is basic unit of configuration such as a frame, column, or tile in Xilinx
Virtex FPGAs; and fcode is the function behavior code implemented as Sys-
temC transaction-level code and is used to model the function behavior (see
Figure 7 for an example).
Note that the same function can be invoked by different tasks, but without
any data sharing between the different invocations.

— E is a set of edges representing the task precedence relations. An edge
(u, v) ∈ E means that task v must wait for task u to complete before starting
execution.

An application is specified by a designer through several task parameters
extracted from Definition 3.2, including the set of tasks and functions, the map-
ping between tasks and functions, the six function attributes, and the prece-
dence relations among the tasks. Note that modeling a new application into an
appropriate set of tasks could be a complicated job, which is out of the scope of
the current work.

To illustrate the aforesaid task parameters, we will use a simple application
that has six tasks invoking four functions as given in Table I(a), where the
mappings between tasks and functions are given and where it is also specified
that task T3 starts execution only after task T5 is done. The function attributes
specified by the user are shown in Table I(b). For example, function F3, when
implemented in software, requires 1300ns execution time without considering
memory accesses, and when implemented in hardware requires 150ns config-
uration time, 600ns execution time, and uses 2 slices. A generic example of
function behavior code is shown in Figure 7. Thus, Table I and Figure 7 depict
the task parameters.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:12 • P.-A. Hsiung et al.

Table I. Tasks in Illustration Example

V = {T1, T2, T3, T4, T5, T6}, E = {(T5, T3)}
Tasks (V) T1 T2 T3 T4 T5 T6

Function F1 F3 F2 F2 F4 F3

(a) Task Graph G(V , E)

fname tsw(ns) tcfg(ns) thw(ns) nslice
F1 200 0 0 0

F2 1000 100 500 1

F3 1300 150 600 2

F4 2000 200 1000 1

(b) Function Parameters

The architecture parameters for this example are similar to what were speci-
fied previously, at the end of Section 3.1.4. The results of performance evaluation
for this simple example using Perfecto will be presented in Section 4.1.

Sometimes a designer might want to evaluate a specific reconfigurable sys-
tem architecture along with some specific combinations of partitioning, schedul-
ing, and placement algorithms, but might not want to target it for some specific
application. To perform such application-independent evaluations, we designed
a randomized application model interface of Perfecto based on the task graphs
for free (TGFF) tool [Dick et al. 1998], as described in Section 3.2.1.

3.2.1 TGFF Interface. Task graphs for free (TGFF) [Dick et al. 1998] is a
tool for generating random task graphs based on some user-specified require-
ments on the graphs. TGFF has been widely used by many academic and in-
dustrial tools for computer-aided design. Since Perfecto is used for design-space
exploration, an interface to TGFF would eliminate the need for users specifying
the exact application for evaluation. The TGFF interface allows users to thor-
oughly evaluate a reconfigurable system along with its partitioning, scheduling,
and placement algorithms because the task graphs are randomly generated.

TGFF generates the task set information from a template by varying the
seed for the random number generator per template. The template parameters
to be defined include the number of task graphs, the average number of func-
tions in a task graph, and the function attributes. The textual representation
of task graphs generated by TGFF is then automatically parsed by Perfecto
into intermediate task data structures that can then be used for partitioning,
scheduling, and placement, thus automating design-space exploration and per-
formance evaluation.

3.3 Partitioning

A partitioning algorithm maps each task in an application model to either soft-
ware or hardware, based on some estimation criteria such that the task is
executed either on the microprocessor or in the DRCL, respectively. Formally,
it is defined as follows.

Definition 3.3. Given an architecture model S and an application model
G(V , E), the partitioning algorithm is defined as Apart(G(V , E), S) =
μ(V , {0, 1}), where μ(Ti) = 0 represents that Ti is mapped to software, and
μ(Ti) = 1 represents that Ti is mapped to hardware.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:13

By selecting the mapping criteria, we can have different partitioning algo-
rithms. A mapping result of a partitioning algorithm is called a system partition,
or simply partition. A partitioning algorithm thus generates a set of system
partitions. For experiment purposes, Perfecto implemented three hardware-
software partitioning algorithms, namely function-based, common-hardware-
first, and random partitioning, as described next.

The function-based partitioning algorithm maps each function into hardware
and/or software, according to the function attributes. For a set F of functions, at
most 2|F | partitions are generated, irrespective of the number of tasks. Hence, in
a partition, even if the same function is invoked by multiple tasks, all of them are
mapped to the same implementation (either hardware or software, depending
on the partition). Though nonexhaustive, this mapping greatly reduces the
number of partitions generated since the number of functions is usually smaller
than the number of tasks.

The common-hardware-first partitioning algorithm first counts the number
of times each function is invoked, denoted by c(f) for a function f ∈ F . If
c(f) > 1, then f is called a common function. The common functions are then
sorted in descending order according to c(f). Given a parameter k > 0 repre-
senting the number of common hardware functions desired, we map the first k
common functions from the ordered list into hardware and map the rest of the
functions into software. This partitioning algorithm is useful because several
scheduling and placement algorithms often employ heuristics based on common
hardware functions, for example, energy-efficient hardware-software schedul-
ing [Hsiung and Liu 2007] and configuration-reuse scheduling and placement
methods [Noguera and Badia 2003; Resano and Mozos 2004].

A third random partitioning method generates random partitions according
to user requirements. We did not employ any complex partitioning algorithm
in Perfecto because our purpose was not to propose a new partitioning algo-
rithm; our purpose was merely to check whether the framework can be used to
efficiently evaluate dynamically reconfigurable system designs.

Though several partitioning algorithms were implemented in Perfecto, users
have to compare the results of the different partitioning algorithms manually
after Perfecto has generated the partitions, by applying the algorithms one-
by-one. The partitioning results of different algorithms can be compared by
considering either the total number of partitions generated by an algorithm
or the quality of the partitions generated. After Perfecto applies the parti-
tioning, scheduling, and placement algorithms, the quality of the partitions
can be gauged. Details of the characteristics of partitions can be found in
Section 3.6. An ideal partitioning algorithm is one that can generate the op-
timal partition within a minimal number of partition results. Optimality in
quality and minimality in quantity are conflicting goals, and thus a real parti-
tioning algorithm can only generate a near-optimal partition in a manageable
number of partitions. Users can thus select a partitioning algorithm based on
the desired trade-off between quality and quantity.

Users can also invent a new partitioning algorithm and implement it into
Perfecto to check whether the evaluated performance improves. Perfecto was
modularly designed such that independent data structures were used for the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:14 • P.-A. Hsiung et al.

set of all tasks, the set of software tasks, and the set of hardware tasks. Thus, a
user has to merely rewrite the Generate Partition() function to implement a
new partitioning algorithm. Well-defined interfaces between this function and
the consequent scheduling algorithm have thus helped users to implement new
algorithms into Perfecto.

3.4 Scheduling

A scheduling algorithm associates an ordering to the set of software tasks that
are ready so that they will be executed in this order on the microprocessor. It
also associates an ordering to the set of hardware tasks that are ready so that
they will be placed and executed in this order in the DRCL. The algorithm is
defined formally in Definition 3.4.

Definition 3.4. Given a set of tasks V , a system partition μ, and a
time instant t, a scheduling algorithm is defined as Asched (V , μ, t) =
〈γsw(V , t), γhw(V , t)〉, where γsw associates a strict total order to the set of soft-
ware tasks that are ready at time t, namely, {Tj | μ(Tj) = 0, (Ti, Tj) ∈ E →
Ti has terminated} and γhw associates a strict total order to the set of hard-
ware tasks that are ready at t, namely, {Tj | μ(Tj) = 1, (Ti, Tj) ∈ E →
Ti has terminated}.

By selecting the ordering criteria, different scheduling algorithms can be
designed. A specific order of tasks generated by a scheduling algorithm is called
a schedule and the time required to complete the tasks in this order is called
the schedule length. Two scheduling methods were implemented in Perfecto: a
default FIFO method and an energy-efficient hardware-software coscheduling
algorithm [Hsiung and Liu 2007].

Given the same system partition μ, different scheduling algorithms result in
different schedule lengths. Smaller schedule lengths are desired so that the set
of tasks complete execution sooner. The overall system-schedule length is the
maximum of the hardware-schedule length and the software-schedule length.
However, due to task dependencies, the hardware schedule and software sched-
ule usually affect each other; thus, in general it might not be possible to optimize
only one of the two schedules without considering the other one. Perfecto allows
the application of different scheduling algorithms on the same set of partitions.
Users can select the scheduling algorithm that results in the smallest system-
schedule length. However, it must be noted here that the hardware-schedule
length is directly affected by the placement algorithm.

Here, also, we were not intent on proposing a new scheduling algorithm.
Users can always implement an existing algorithm such as the Horizon or
Stuffing algorithms [Steiger et al. 2004], classified stuffing [Hsiung et al. 2008],
and real-time relocatable task scheduling [Chiang 2007], or can invent a new
one. Since the algorithms themselves are out of the scope of the present work,
interested readers may refer to Hsiung and Liu [2007] for further details on
the energy-efficient hardware-software coscheduling algorithm that was imple-
mented in Perfecto. Integrating new scheduling algorithms into Perfecto also
allows another dimension of exploration, whereby we can tune a scheduling

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:15

algorithm or select the best for a specific application. Due to modular design and
the well-defined interfaces in Perfecto, users have merely to modify or rewrite
the Scheduler() function. This function takes two sets of tasks Q1 and Q2 and
sorts them according to some criteria, where Q1 is a set of ready hardware tasks
and Q2 is a set of ready software tasks.

3.5 Placement

A placement algorithm tries to find a feasible location in a fixed-size DRCL
for a given hardware task of some fixed size. The placement algorithm de-
pends on the underlying configuration model, namely, paged one-dimensional,
segmented one-dimensional, or two-dimensional, where the basic units of con-
figuration are a fixed-size slot, a column, or a tile, respectively. In Perfecto, an
abstract model is used where the basic unit of configuration is simply called a
slice. Thus, in Perfecto the underlying configuration model could be any of the
three.

Definition 3.5. Given a DRCL of Nslice slices, a list Lused of spaces al-
located to tasks, a list Lfree of free spaces, and a task Tj of size nslice(Tj)
slices to be placed, a placement algorithm is defined as Aplace(Tj , Lused, Lfree) =
〈loc, L′

used, L′
free〉, where loc is either NULL or a pointer to a feasible location

for the task Tj in the DRCL such that nslice(loc) ≥ nslice(Tj). Suppose that after
placing Tj in loc, the used part of loc is denoted as loc′ and the remaining free
part, if any, is denoted by loc′′, that is, nslice(loc) = nslice(loc′)+nslice(loc′′), where
nslice(loc′) = nslice(Tj). Then, the lists are updated as follows: L′

used = Lused ∪
{loc′}. L′

free = Merge Adj(Lfree\{loc} ∪ {loc′′}), where the function Merge Adj()

tries to merge adjacent free spaces into contiguous blocks of free space.

By changing the selection criteria for the feasible location to place a task,
different placement algorithms can be invented. Currently in Perfecto, a place-
ment policy whereby the DRCL selects a block for configuration according to
the following rules.

(1) If there exists a block which is already configured with the same circuit but
which is not executing currently, that is, it is in the done status, then reuse
the block by selecting it for the current task.

(2) If there exists a configured block with the same slice count, but with a
different function and at the done status, then configure the new task in
this block.

(3) If there exists an unconfigured block, that is, in the idle status, with enough
slices, then configure in this block.

(4) If there is no free block with enough slices, the blocks at the done status
will be released into the idle status, then check rule 1 to rule 3 again.

An example is shown in Figure 8(a), where a DRCL is divided into several
slices, S0 to S5. Suppose there are three circuits already configured in the
DRCL, but that C1 and C3 are at the done status, while C2 is in the execute
status. If a request for circuit C2 is issued to the DRCL, then, according to
aforesaid placement rules, this task will be configured and executed in S0. If a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:16 • P.-A. Hsiung et al.

Fig. 8. Hardware task placement in perfecto.

request is received for circuit C4 by the DRCL and if circuit C4 needs 3 slices,
then circuit C3 will be released first, and then circuit C4 will be configured into
S2 to S4, as shown in Figure 8(b).

The aforementioned is only a sample one-dimensional placement strategy
implemented in Perfecto. The algorithms themselves are not the focus of this
article. Users can always implement two-dimensional and other placement
strategies such as multi-objective placement [Liao 2007] and integrate them
into Perfecto for further evaluation of both algorithms and systems. The func-
tion Placer() takes a task, a list of used blocks, and a list of free blocks. It then
computes the ideal location for the task and updates the two lists as described
in this section. Users simply have to modify or design a new function to replace
the default Perfecto Placer().

As a final note to this subsection, we remark that in a real system, a bitstream
must be relocated to the target location before it can be used for configuration,
where relocation simply means a change of the major address (MJA) to the
target column or tile. This relocation can be achieved using software such as
Parbit, or hardware filters such as REPLICA. Since the bitstream relocation
does not affect the performance of the system significantly, it is abstracted in
Perfecto.

3.6 Performance Evaluation Results

Applying the partitioning, scheduling, and placement algorithms described in
Sections 3.3, 3.4, and 3.5, respectively, to a user-parameterized reconfigurable
architecture model and a user-specified application model, the built-in simu-
lation capabilities of SystemC are used to simulate the system. During simu-
lation, as shown in Figure 3, several performance readings are collected and
three results generated, including partition evaluations, bus-access conflicts,
and real-time placements.

Before describing how the results are evaluated by Perfecto, some basic ter-
minologies and definitions are required. Given a task t that invokes a function
F = (f , tsw, tcfg, thw, nslice, fcode) in a partition P , we use λ(t, P) = (f , u) to de-
note the implementation of the task t (i.e., function f) as a software function if
u = 0 and as a hardware function if u = 1. The computation time ET(t, P), con-
figuration time CT(t, P), and reconfigurable resource requirements RR(t, P)
are defined as follows. For a software task, ET(t, P) = tsw, CT(t, P) = 0, and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:17

RR(t, P) = 0, while for a hardware task ET(t, P) = thw, CT(t, P) = tcfg, and
RR(t, P) = nslice.

For each task t in each system partition P , Perfecto accurately evaluates the
total task execution time (TET(t, P)), which is the sum of the computation time
(ET(t, P)), configuration time (CT(t, P)), memory-access time (MAT(t, P)), and
bus-wait time (BWT(t, P)). The first two are as defined earlier, and the last two
are obtained through simulation.

For each partition P , Perfecto evaluates five attributes of the partition, called
partition evaluations, which include the total partition execution time (PET) in
nanoseconds, the average DRCL utilization (ADU %), the maximum number
of DRCL slices used (MS), the percentage of average configuration time (ACT
%), and the percentage of average bus-waiting time (AWT %). Out of these
five attributes, the values of PET and MS depend on the scheduler and the
placer chosen in Perfecto, respectively. The other three attributes are defined
as follows.

ADU(P) =
∑

t(TET (t, P) × RR (t, P))

PET × MS
, ACT (P) =

∑
t CT (t, P)

∑
t TET (t, P)

,

AWT (P) =
∑

t BWT (t, P)
∑

t TET (t, P)

The bus-access conflicts show the real-time information of the number of
tasks competing for bus access and also the tasks that are actually making
requests. From this information, a designer can detect whether there is a bot-
tleneck in system performance. The real-time placement information for each
task in each partition can be used for further tuning and optimization.

After simulation, by analyzing the aforementioned results generated by
Perfecto, a designer can then decide to select one or more partitions that best
fit his/her needs. The criterion could be the least total execution time, least
average DRCL utilization, or least average bus-waiting time. All of these re-
sults would be more apparent and intuitive through application examples, as
described in Section 4.

4. APPLICATION EXAMPLES

We implemented the proposed performance evaluation framework Perfecto in
IEEE 1666-2005 SystemC on a Linux Fedora Core-3 workstation with Intel
Pentium 4 2.4 GHz CPU and 1GB RAM. Perfecto was applied to several de-
signs. We use a simple example to illustrate the framework and then show its
application to a more complex real-world network security example. Note that
the partitioning, scheduling, and placement algorithms applied to the examples
in this section are all the default ones in Perfecto, so that we can focus on the
framework itself.

4.1 Simple Illustration Example

The simple illustration example was introduced in Section 3.2, which has six
tasks invoking four functions, with a precedence relation (T5, T3). Note that
from the function attributes in Table I, we can conclude that F1 has a software

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:18 • P.-A. Hsiung et al.

Table II. Partitions for Simple Illustration Example

Function Name (fname) Num Tasks

F1 F2 F3 F4

Partition# {T1} {T3, T4} {T2, T6} {T5} SW HW

P0 0 1 1 1 1 5

P1 0 1 1 0 2 4

P2 0 1 0 1 3 3

P3 0 1 0 0 4 2

P4 0 0 1 1 3 3

P5 0 0 1 0 4 2

P6 0 0 0 1 5 1

P7 0 0 0 0 6 0

0: implement in software; 1: implement in hardware; SW: number of software tasks; HW:

number of hardware tasks.

implementation only. Perfecto uses function-based partitioning to generate the
partitions for the example as shown in Table II. Partition P0 has the most
hardware tasks and P7 is the all-software partition. In the following, we show
how Perfecto helps a system designer to make intelligent partition decisions,
optimize system performance, and evaluate task placement strategies.

4.1.1 Making Intelligent Partition Decisions. All eight hardware-software
partitions for this example were evaluated by Perfecto as shown in Table III,
which gives the composition of time and the number of slices required by each
task. Take partition P0 as an example, whose total execution time is 2033ns,
average DRCL utilization 54.63%, the maximum usage of DRCL is 3 slices,
average configuration time is 11.96%, and average bus-waiting time is 2.28%.
Further, the execution time of task T4 in partition P0 is 752ns, which includes
pure execution time (500ns), configuration time (100ns), memory-access time
(90ns), and bus waiting time (62ns). From Table III, some useful conclusions
can be drawn as follows; these will help a reconfigurable system designer to
make intelligent design choices.

(1) The most-hardware partition, P0, requires the least execution time, while
all-software partition P7 requires the most. This observation, though intu-
itively expected, might not be true if the reconfiguration time is very large,
as exemplified by the network security system example in Section 4.2.

(2) The execution time for partitions P1 and P2 are quite close; however, P2
uses fewer DRCL slices than P1. If P2 is selected for system design, we can
use a smaller DRCL (2 slices instead of 5) for this application. Architecture
exploration can thus be performed.

(3) Partition P4 gives a very good trade-off between hardware and software
because its total execution time (2623ns) is quite close to that of the most-
hardware partition P0 (2033ns). Also, its average bus-waiting time (0.2%)
is negligible just like that of the all-software partition P7, which instead
has a much higher execution time (7351ns).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:19

T
a

b
le

II
I.

E
v
a

lu
a

ti
o
n

b
y

P
e
rf

e
ct

o
o
f

H
a

rd
w

a
re

-S
o
ft

w
a

re
P

a
rt

it
io

n
s

fo
r

a
S

im
p

le
E

x
a

m
p

le

C
T

|M
A

T
|B

W
T

T
a

sk
E

x
e
cu

ti
o
n

T
im

e
(n

s)
,

w
h

e
re

T
a

sk
E

x
e
cu

ti
o
n

T
im

e
=

E
T

+
C

T
+

M
A

T
+

B
W

T
P

E
T

A
D

U
A

C
T

A
W

T

P
#

(n
s)

(%
)

M
S

(%
)

(%
)

T
1

T
2

T
3

T
4

T
5

T
6

P
0

2
0

3
3

5
4

.6
3

3
1

1
.9

6
2

.2
8

0
2

4
0

0
1

5
0

2
0

3
1

0
0

9
0

0
1

0
0

9
0

6
2

2
0

0
6

0
4

0
0

2
0

0

4
4

0
7

7
3

6
9

0
7

5
2

1
3

2
5

6
2

0

P
1

3
1

1
9

2
9

.5
4

5
7

.2
7

2
.8

0
0

2
4

0
0

1
5

0
2

0
4

0
9

0
0

1
0

0
9

0
6

1
0

6
0

0
1

5
0

2
0

8
9

4
4

0
7

7
4

5
9

0
7

5
1

2
0

8
5

8
5

9

P
2

3
0

8
3

1
7

.1
6

2
4

.6
2

1
.2

3
0

2
4

0
0

0
2

0
0

0
9

0
0

1
0

0
9

0
5

1
2

0
0

6
0

2
9

0
2

0
0

4
4

0
1

3
2

0
5

9
0

7
4

1
2

0
8

5
1

3
2

0

P
3

5
1

6
9

5
.1

9
1

1
.5

4
0

.9
4

0
2

4
0

0
0

2
0

0
0

9
0

9
1

0
0

9
0

5
2

0
6

0
0

0
2

0
0

4
4

0
1

3
2

0
5

9
9

7
4

2
2

0
8

5
1

3
2

0

P
4

2
6

2
3

3
3

.4
5

5
9

.1
6

0
.2

0
0

2
4

0
0

1
5

0
2

0
2

0
9

0
0

0
9

0
0

2
0

0
6

0
0

1
5

0
2

0
9

4
4

0
7

7
2

1
0

9
0

1
0

9
0

1
2

8
5

7
7

9

P
5

4
7

0
9

1
3

.2
0

4
4

.7
9

0
.2

2
0

2
4

0
0

1
5

0
2

0
3

0
9

0
0

0
9

0
0

0
6

0
0

1
5

0
2

0
1

1

4
4

0
7

7
3

1
0

9
0

1
0

9
0

2
0

8
5

7
8

1

P
6

5
2

6
5

4
.8

8
1

3
.0

6
0

.0
0

0
2

4
0

0
0

2
0

0
0

9
0

0
0

9
0

0
2

0
0

6
0

0
0

2
0

0

4
4

0
1

3
2

0
1

0
9

0
1

0
9

0
1

2
8

5
1

3
2

0

P
7

7
3

5
1

0
.0

0
0

0
.0

0
0

.0
0

0
2

4
0

0
0

2
0

0
0

9
0

0
0

9
0

0
0

6
0

0
0

2
0

0

4
4

0
1

3
2

0
1

0
9

0
1

0
9

0
2

0
8

5
1

3
2

0

P
E

T
:

p
a

rt
it

io
n

e
x
e
cu

ti
o
n

ti
m

e
;

A
D

U
:

a
v
e
ra

g
e

D
R

C
L

u
ti

li
za

ti
o
n

;

M
S

:
m

a
x
im

u
m

u
sa

g
e

o
f

D
R

C
L

sl
ic

e
s

(o
u

t
o
f

a
to

ta
ll

y
o
f

5
sl

ic
e
s)

;
A

C
T

:
a
v
e
ra

g
e

co
n

fi
g
u

ra
ti

o
n

ti
m

e
;

A
W

T
:

a
v
e
ra

g
e

b
u

s-
w

a
it

in
g

ti
m

e
;

E
T

:
p

u
re

e
x
e
cu

ti
o
n

ti
m

e
∈

{t s
w

,
t h

w
};

C
T

:
co

n
fi

g
u

ra
ti

o
n

ti
m

e
∈

{0
,
t c

fg
};

M
A

T
:

m
e
m

o
ry

-a
cc

e
ss

ti
m

e
;

B
W

T
:

b
u

s-
w

a
it

ti
m

e.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:20 • P.-A. Hsiung et al.

4.1.2 Optimizing Performance. Perfecto not only helps designers in mak-
ing intelligent hardware-software partitioning choices, but also makes debug-
ging performance bottlenecks easier by providing designers with detailed real-
time information on how and when the tasks in each partition compete for
bus access. From Table III, we can observe that task T6 in partition P1 has
the largest bus-waiting time of 89ns among all tasks in all partitions. Fur-
ther, this also directly reflects on the average bus-waiting time of partition P1
(2.8ns), which is largest among all the eight partitions. To debug this perfor-
mance bottleneck, we can analyze the bus-conflict accesses reported by Perfecto.
Figure 9 shows the aggregate and individual task bus accesses for partition
P1 along the time axis. Analyzing the aggregate diagram, we can immediately
identify a performance bottleneck in partition P1, where the maximum number
of concurrent bus accesses is 3. Suppose the system designer would like to solve
this bottleneck. Through the individual task accesses provided by Perfecto, we
can identify the tasks that are competing in this bottleneck of 3 concurrent
bus accesses, namely, tasks T1, T3, and T6. We can also exactly pinpoint the
time (200ns) during which the three tasks are competing for the bus. These
information details help designers to resolve bottlenecks and optimize their
designs.

4.1.3 Evaluating Task Placements. Besides guiding system designers in
making intelligent partitioning decisions and in resolving performance bottle-
necks, Perfecto also helps designers in tuning hardware task placement al-
gorithms by providing designers with detailed real-time placement informa-
tion for each task in the DRCL area. For the simple illustrative example, from
Table III, we can observe that partition P1 uses a maximum of 5 DRCL slices,
but has quite a low average DRCL utilization of 29.54% only. Thus, we would
like to investigate the task placement in P1, which is shown in Figure 10, for
a DRCL of 5 slices. The numbers in the top-left corner of each block represent
the time when the blocks were placed. For example, task T2 was placed and
configured at 6ns, T4 at 8ns, T6 at 10ns, and T3 at 2528ns. The status of a
slice indicates whether it is idle, executing, or done. A slice in an idle or done
state can be reused for placing newly arrived tasks. As we can observe, there
are large periods of time where several slices are unused. Intuitively, we can see
that if we delay the execution of T6 to 780ns, we would place it in slices S0 and
S1, following T2. Further, we could also delay T4 and place it in S1, following
T6. Finally, we would place T3 also in S1, following T4. Thus, only 2 slices are
allowable without affecting the total execution time of P1. Note that T3 can
start only at 2528ns due to its precedence constraint with T5, a software task
in P1. This is an illustration of how placement information can help designers
to change the placement algorithm or tune it manually.

4.2 Network Security System Example

Nowadays, a given company has headquarters and several branch offices lo-
cated at different places. These communicate and transfer data through the In-
ternet. This is dangerous when they transfer data that is not encrypted because
the Internet is an open network; therefore, they encrypt data before transfer

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:21

Fig. 9. Bus-access conflicts for partition P1 of the simple example.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:22 • P.-A. Hsiung et al.

Fig. 10. Hardware task placement for partition P1 of the simple example.

and decrypt after receiving. The network; security system is used when head-
quarters need to send a ciphertext to some branch office through the Internet.
It is also used for decrypting it back into plain text at the branch offices.

Cryptography algorithms can be implemented either in software or in hard-
ware. Table IV compares software and hardware implementations. In the case
of software, there is flexibility enough to update the cryptography algorithm,
but it may not provide sufficient throughput. Fixed hardware provides good
performance, but has low flexibility because devices may need to be changed
when the cryptography algorithm is updated. However, if reconfigurable logic
is designed into such a security system, it will not only provide high throughput
as in the case of hardware, but will also allow good flexibility as in the case of
software.

The network security system is represented by a set of 23 concurrent tasks
that invoke 5 different encryption functions, namely, MD5, SHA-1, DES, 3-
DES, and AES. The number of invocations for each of these functions is given
in Table V and the function attributes are specified as shown in Table VI. For
example, the DES cryptography algorithm when implemented in software re-
quires 990ns execution time without memory access, and when implemented
in hardware requires 63.6μs configuration time, 60ns execution time, and uses
255 slices. Note that the input data-block sizes for the 5 encryption functions
are 16, 16, 2, 2, and 4 words, respectively, where a word consists of 4 bytes. The
output data sizes for the 5 functions are 4, 5, 2, 2, and 4, respectively.

The architecture parameters for the network security system are as follows.
As far as bus width is concerned, we evaluated two versions: 1 word and 2
words. Memory size is unlimited and the memory-access time is 10ns. Since
our target FPGA is a Xilinx Virtex-II Pro (XC2VP2-7), the maximum available
number of DRCL slices is 1420.

To cope with simulation of large applications, Perfecto employs the follow-
ing techniques. Since the total number of placed and configured tasks cannot
exceed the number of DRCL slices Nslice, the size of the task table is fixed at
Nslice, which allows Perfecto to handle most applications. Further, because the
architecture models in Perfecto are transaction-level models, the differences in
hardware and software task execution times do affect the efficiency of Perfecto.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:23

Table IV. Comparisons of Security System Implementations

Implementation Cryptography Algorithm Update Throughput Flexibility

Software Update Software Low High

Hardware Change Device High Low

Reconfigurable Logic Reconfigure with Bitstream High High

Table V. Task Set of Network Security System Example

fname MD5 SHA-1 DES 3-DES AES

Number of Invocations 2 2 7 6 6

Table VI. Function Parameters for Network Security System

Algorithm SW Exec Time Config Time HW Exec Time Slice Count

Function (fname) tsw(ns) tcfg(μs) thw(ns) (nslice)

F1 MD5 200 119.2 190 478

F2 SHA-1 670 141.7 190 568

F3 DES 990 63.6 60 255

F4 3-DES 1960 190.3 70 763

F5 AES 910 33.2 220 133

It is also assumed that the DRCL size is fixed, irrespective of a change in bus
width.

4.2.1 Making Intelligent Partition Decisions. Perfecto generates all 32 pos-
sible partitions for the network security system as shown in Table VII. For in-
stance, in partition 25, DES and 3-DES are implemented in hardware, while
MD5, SHA-1, and AES are implemented in software, which gives a total of 13
hardware and 10 software tasks.

For legibility, in Table VIII, we show the detailed Perfecto simulation results
for 8 representative partitions out of the total 32 partitions in the network
security system, which include P0, P1, P2, P4, P21, P25, P26, and P31. All
functions are implemented in hardware in partition P0. There are four functions
that are implemented in hardware and one in software for partitions P1, P2, and
P4. There are two functions implemented in hardware and three in software
for partitions P21, P25, and P26. All functions are implemented in software in
partition P31.

From Table VIII, the following conclusions can be drawn.

(1) Conventionally, for nonreconfigurable system designs a full-hardware sys-
tem implementation usually has the shortest execution time compared to a
hardware-software system. However, the all-hardware partition P0 of the
network security system does not have the shortest execution time. Com-
pared with the total execution time of 944.6μs for P0 with 1-word bus width,
there are at least two other partitions, P1 and P25, that have shorter exe-
cution times, that is, 637.9μs and 504.9μs, respectively. The reason is that

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:24 • P.-A. Hsiung et al.

Table VII. Hardware-Software Partitions of Network Security System

P # 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

MD5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SHA-1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

DES 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

3-DES 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

AES 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

P # 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MD5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SHA-1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

DES 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

3-DES 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

AES 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0: Implement in Software, 1: Implement in Hardware

the reconfiguration time overhead becomes a bottleneck in the all-hardware
partition.

(2) The average DRCL utilizations for tasks in partitions P2 and P21, that is,
10.55% and 12.29%, respectively, are quite close, but their total execution
times of 2992μs and 1718μs differ significantly. The reason is that partition
P2 requires a much larger average configuration time compared to partition
P21. The difference is at least 20% for both bus-width architectures.

(3) All three of the partitions P1, P2, and P4 have 4 functions in hardware
and 1 in software. However, their total execution times differ significantly.
For example, they are 637.9μs, 2992.1μs, and 1351.4μs, respectively, for a
1-word bus width. The reason is that the partitions have different average
DRCL utilizations of 64.95%, 10.55%, and 28.59%, respectively, depending
on the different sizes of cryptography function when implemented in hard-
ware. We observe that a larger average DRCL utilization, such as 64.95%
by partition P1, gives a shorter execution time, specifically 637.9μs.

(4) Comparing the two different architectures with 1- and 2-word bus widths,
we can observe that the execution time for each partition of the architecture
with 1-word bus width is larger than the corresponding partition of the
architecture with 2-word bus width. The reason is that a smaller bus width
results in an increase in memory-access time, which is included in the total
execution time.

If total execution time is the sole criterion for selecting the best hardware-
software partition, then the partition P25 gives the smallest execution time
(504.9μs) and will thus be selected as the best choice for further implementa-
tion of the network security system. However, from Table VIII, we can see that

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:25

T
a

b
le

V
II

I.
S

u
m

m
a

ry
R

e
su

lt
s

o
f

A
p

p
li

ca
ti

o
n

s
w

it
h

D
if

fe
re

n
t

B
u

s
W

id
th

s
in

N
e
tw

o
rk

S
e
cu

ri
ty

S
y
st

e
m

E
x
a

m
p

le

B
u

s
W

id
th

=
1

w
o
rd

B
u

s
W

id
th

=
2

w
o
rd

s

P
a

rt
it

io
n

A
v
g
.

M
a

x
A

v
g
.

A
v
g
.

B
u

s
P

a
rt

it
io

n
A

v
g
.

M
a

x
A

v
g
.

A
v
g
.

B
u

s

E
x
e
cu

ti
o
n

D
R

C
L

S
li

ce
C

o
n

fi
g
.

W
a

it
in

g
E

x
e
cu

ti
o
n

D
R

C
L

S
li

ce
C

o
n

fi
g
.

W
a

it
in

g

T
im

e
U

ti
li

za
ti

o
n

U
sa

g
e

T
im

e
T

im
e

T
im

e
U

ti
li

za
ti

o
n

U
sa

g
e

T
im

e
T

im
e

P
#

(μ
s)

(%
)

(M
ax

S
)

(%
)

(%
)

(μ
s)

(%
)

(M
ax

S
)

(%
)

(%
)

0
9

4
4

.6
5

7
.5

8
1

4
0

6
8

8
.4

4
0

.7
1

9
0

5
.2

5
6

.9
7

1
3

4
4

9
3

.9
1

0
.2

3

1
6

3
7

.9
6

4
.9

5
1

3
3

1
8

2
.1

7
2

.3
2

5
7

5
.6

6
6

.6
5

1
3

3
1

9
0

.3
2

0
.8

0

2
2

9
9

2
.1

1
0

.5
5

1
3

4
4

8
4

.2
3

1
.3

6
2

9
6

2
.1

7
.3

7
1

3
4

4
8

7
.4

9
1

.6
0

4
1

3
5

1
.4

2
8

.5
9

1
3

3
1

8
1

.4
0

1
.9

5
1

3
2

5
.2

2
6

.9
1

1
3

3
1

8
9

.8
1

0
.5

0

2
1

1
7

1
8

.2
1

2
.2

9
1

3
3

1
6

4
.1

8
1

.6
0

1
6

7
2

.6
1

1
.3

2
1

3
3

1
7

7
.1

7
0

.6
8

2
5

5
0

4
.9

4
5

.9
4

1
2

7
3

7
2

.2
1

6
.1

4
4

5
9

.9
4

3
.6

8
1

2
7

3
8

4
.3

8
2

.3
8

2
6

3
0

1
6

.0
3

.0
6

1
4

0
8

7
1

.4
0

3
.9

5
2

9
7

5
.0

2
.7

7
1

4
0

8
8

3
.8

6
0

.4
2

3
1

4
7

2
3

.8
0

.0
0

0
0

.0
0

0
.0

0
4

6
4

2
.1

0
.0

0
0

0
.0

0
0

.0
0

M
a

x
S

:
M

a
x
im

u
m

U
sa

g
e

o
f

D
R

C
L

S
li

ce
s

(o
u

t
o
f

to
ta

ll
y

1
4

2
0

sl
ic

e
s)

.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:26 • P.-A. Hsiung et al.

Fig. 11. Execution status for partition P25 of the example network security system.

the average bus-waiting time for tasks in P25 is 6.14% of its execution time,
which is quite high compared to that of the other partitions. If the task-response
time has a higher priority compared to other design criteria, then P25 might not
be the best choice. Nevertheless, Perfecto can still be used to analyze the exact
execution status of P25, which is as shown in Figure 11 for an architecture with
bus width of 2 words. In this figure, the x-axis represents the task number and
the y-axis represents time progress. The function label F? associated with a
task, such as F5 in the region of task T1, means that task T1 invokes function
F5, namely, the AES algorithm implemented in software. Further, the blocks
in the region of task T12 indicate that the task is implemented in hardware
with circuit C4, namely, the 3-DES algorithm, whose hardware configuration
takes place in the time period from 69800ns to 260100ns, and whose execution
is in the time period from 260100ns to 293263ns. Using Figure 11, as generated
by Perfecto, a system designer can understand the comparative execution sta-
tus of each task to decide whether partition P25 is the best choice for further
implementation.

4.2.2 Optimizing Performance. A portion of the aggregate bus accesses by
the 23 tasks in partition P25 of the network security system is illustrated in
Figure 12. Referring to this report, we can easily locate at least two system
bottlenecks, at 63677ns and 65114ns, where the number of concurrent bus
requests reaches a maximum of 5. Similar to the simple illustration example,
the designer can then pinpoint the exact tasks that are contributing to these

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:27

Fig. 12. Bus-access conflicts for partition P25 of the network security system.

Fig. 13. Placement diagram of DRCL in the network security system example.

bottlenecks and try to eliminate the latter by modifying the tasks themselves,
or by changing the schedules or partitions.

4.2.3 Evaluating Task Placements. To explore how the tasks are placed in
a partition, Perfecto allows designers to study the detailed real-time placement
of each task in a reconfigurable system. For partition P25 of the network secu-
rity system, the task placements in a DRCL (Xilinx Virtex-II Pro XC2VP2-7) of
1420 slices are illustrated in Figure 13, where the x-axis represents the slices

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:28 • P.-A. Hsiung et al.

and the y-axis represents the time progress. This diagram can help a designer
to study the task placements in DRCL and also to manually alter some, if de-
sired. For example, we can easily observe that for partition P25, the maximum
slice count is 1273; however, the resource utilization is not high for the slices
numbered from 780 to 1273. If a smaller DRCL is required, we can manually
move and reschedule task T11 that invokes function F3 (DES implemented as
hardware circuit C3) to a later slot, after 106699ns and before 374489ns. The
size of the DRCL can thus be reduced to 1273−255 = 1018 slices. Further, since
tasks T10, T14, and T22 all invoke the same function F3 (DES implemented
as hardware circuit C3), if T11 is inserted between T14 and T22, we can also
reuse the hardware configuration in slices 780 to 1035 and thus save hardware
reconfiguration time and power. In summary, we can say that the placement
diagram allows a designer to fine-tune his/her design schedules and placements
such that a more optimal system can be constructed in terms of smaller DRCL
sizes, shorter total execution time, higher resource utilization, and lesser power
consumption through fewer hardware reconfigurations.

5. CONCLUSIONS

A SystemC-based performance evaluation framework called Perfecto for dy-
namically, partially reconfigurable systems was proposed and developed. Per-
fecto can be used for design-space exploration, as shown in the application
examples, and also for designing or evaluating hardware task scheduling and
placement algorithms that have to be integrated in an operating system for
reconfigurable systems. Perfecto not only takes advantage of SystemC simula-
tion capabilities, but also generates very detailed reports on the performance of
different partitions. The partitioning, scheduling, and placement algorithms in
Perfecto can be replaced by a user to suit his/her needs. This is a step towards
filling in the gap that keeps widening between rapidly advancing reconfigurable
technologies and slowly improving reconfigurable design technologies, includ-
ing methods, tools, and environments.

In the future, we plan to improve on the interfaces of Perfecto for hooking in
user-designed partitioning, scheduling, and placement algorithms. Further, we
also plan to extend Perfecto by integrating it into the UML/SystemC-based de-
sign flow for dynamically reconfigurable systems [Tseng and Hsiung 2005].
Perfecto will act as a design-space exploration and performance evaluation
tool in the design flow. Finally, we plan to apply Perfecto to other application
domains.

REFERENCES

BALEANI, M., GENNARI, F., JIANG, Y., PATEL, Y., BRAYTON, R., AND SANGIOVANNI-VINCENTELLI, A. 2002.

Hardware-Software partitioning and code generation of embedded control applications on a

reconfigurable architecture platform. In Proceedings of the 10th International Symposium on
Hardware-Software Codesign (CODES). ACM Press, New York, 151–156.

CHANG, D. AND MAREK-SADOWSKA, M. 1998. Partitioning sequential circuits on dynamically recon-

figurable FPGAs. In Proceedings of the 6th International Symposium on FPGAs. ACM Press,

New York, 161–167.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

Perfecto: A SystemC-Based Design-Space Exploration Framework • 17:29

CHIANG, C.-C. 2007. Hardware/Software real-time relocatable task scheduling and placement

in dynamically partial reconfigurable systems. M.S. thesis, National Chung Cheng University,

Chiayi, Taiwan.

COMPTON, K. AND HAUCK, S. 2002. Reconfigurable computing: A survey of systems and software.

ACM Comput. Surv. 34, 2 (Jun.), 171–210.

DESMET, D., AVASARE, P., COENE, P., DECNEUT, S., HENDRICKX, F., MARESCAUX, T., MIGNOLET, J.-Y., PASKO,

R., SCHAUMONT, P., AND VERKEST, D. 2002. Design of Cam-E-leon, a run-time reconfigurable Web

camera. In Proceedings of the Embedded Processor Design Challenges: Systems, Architectures,
Modeling, and Simulation (SAMOS). Lecture Notes in Computer Science, vol. 2268. Springer,

274–290.

DICK, R. P., RHODES, D. L., AND WOLF, W. 1998. TGFF: Task graphs for free. In Proceedings of
the 6th International Workshop on Hardware/Software Codesign (CODES). IEEE Press, 97–

101.

HSIUNG, P.-A., HUANG, C.-H., AND CHEN, Y.-H. 2008. Hardware task scheduling and placement in

operating systems for dynamically reconfigurable SoC. J. Embed. Comput. (to appear).

HSIUNG, P.-A. AND LIU, C.-W. 2007. Exploiting hardware and software low power techniques for

energy efficient co-scheduling in dynamically reconfigurable systems. In Proceedings of the 17th
International Conference on Field Programmable Logic and Applications (FPL). IEEE Computer

Society Press, 165–170.

LIAO, H.-W. 2007. Multi-Objective placement of reconfigurable hardware tasks in real-time sys-

tems. M.S. thesis, National Chung Cheng University, Chiayi, Taiwan.

LIU, C.-W. 2006. Energy efficient hardware/software co-scheduling in reconfigurable systems.

M.S. thesis, National Chung Cheng University, Chiayi, Taiwan.

LOO, S. AND WELLS, B. 2006. Task scheduling in a finite resource reconfigurable hardware/software

co-design environment. INFORMS J. Comput. 18, 12 (Spring), 151–172.

MEI, B., SCHAUMONT, P., AND VERNALDE, S. 2000. A hardware-software partitioning and scheduling

algorithm for dynamically reconfigurable embedded systems. In Proceedings of the 11th ProRISC
Workshop on Circuits, Systems and Signal Processing Veldhoven.

NOGUERA, J. AND BADIA, R. 2003. System-Level power-performance trade-offs in task scheduling

for dynamically reconfigurable architectures. In Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES). ACM Press, New York,

73–83.

(OSCI), O. S. I. 2008. SystemC User’s Guide. http://www.systemc.org/.

PELKONEN, A., MASSELOS, K., AND CUPÁK, M. 2003. System-Level modeling of dynamically recon-

figurable hardware with SystemC. In Proceedings of the 10th Reconfigurable Architectures Work-
shop, International Parallel and Distributed Processing Symposium, 174–181.

QU, Y., TIENSYRJÄ, K., AND MASSELOS, K. 2004. System-Level modeling of dynamically reconfig-

urable co-processors. In Proceedings of the 14th International Conference on Field Programmable
Logic and Application (FPL). Lecture Notes in Computer Science, vol. 3203. Springer, 881–

885.

RAKHMATOV, D. AND VRUDHULA, S. 2002. Hardware-Software bipartitioning for dynamically re-

configurable system. In Proceedings of the 10th International Workshop on Hardware-Software
Codesign (CODES), 145–150.

RESANO, J. AND MOZOS, D. 2004. Specific scheduling support to minimize the reconfiguration over-

head of dynamically reconfigurable hardware. In Proceedings of the 41th Annual Design Automa-
tion Conference (DAC). ACM Press, New York, 119–124.

RISSA, T., DONLIN, A., AND LUK, W. 2005. Evaluation of SystemC modelling of reconfigurable em-

bedded systems. In Proceedings of the Design, Automation and Test in Europe (DATE), vol. 3,

253–258.

SANTAMBROGIO, M. 2008. Hardware-Software codesign methodologies for dynamically reconfig-

urable systems. Ph.D. thesis, Politecnico Di Milano, Italy.

STEIGER, C., WALDER, H., AND PLATZNER, M. 2004. Operating systems for reconfigurable embed-

ded platforms: Online scheduling of real-time tasks. IEEE Trans. Comput. 53, 11 (Nov.), 1393–

1407.

TIENSYRJÄ, K., QU, Y., ZHANG, Y., CUPAK, M., RYNDERS, L., VANMEERBEECK, G., MASSELOS, K., POTAMI-

ANOS, K., AND PETTISSALO, M. 2004. SystemC and OCAPI-xl based system-level design for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

17:30 • P.-A. Hsiung et al.

reconfigurable systems-on-chip. In Proceedings of the International Forum on Specification and
Design Languages (FDL), 428–429.

TRIMBERGER, S. 1998. Scheduling designs into a time-multiplexed FPGA. In Proceedings of the
6th International Symposium on FPGAs. ACM Press, New York, 153–160.

TSENG, C.-C. AND HSIUNG, P.-A. 2005. UML-Based design flow and partitioning methodology for

dynamically reconfigurable computing systems. In Proceedings of the IFIP International Con-
ference on Embedded and Ubiquitous Computing (EUC). Lecture Notes in Computer Science,

vol. 3824. Springer, 479–488.

Received March 2008; revised May 2008; accepted July 2008

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 17, Pub. date: September 2008.

